Tutorium: Diskrete Mathematik

Vorbereitung der Klausur am 08.02.2024 (Teil 2)

Steven Köhler

mathe@stevenkoehler.de mathe.stevenkoehler.de

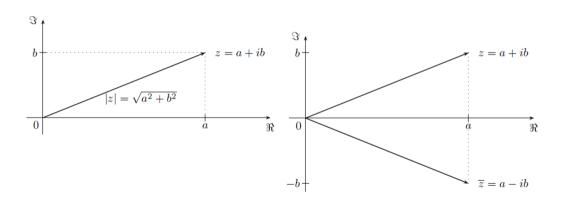
Komplexe Zahlen

Komplexe Zahlen I

Es sei $z=a+ib\in\mathbb{C}$. Dann heißt

- ▶ a Realteil von z (Bezeichnung: $a = \text{Re } z \text{ oder } a = \Re z$);
- ▶ *b Imaginärteil* von *z* (Bezeichnung: b = Im z oder $b = \Im z$);
- $|z| = \sqrt{a^2 + b^2}$ absoluter Betrag von z;
- $ightharpoonup \overline{z} = a ib$ konjugiert komplexe Zahl zu z.

Komplexe Zahlen II

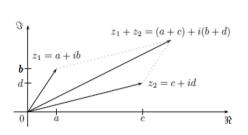


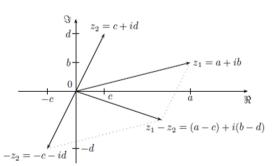
Rechnen mit komplexen Zahlen I

Addition & Subtraktion

Es seien $z_1 = a_1 + ib_1$ und $z_2 = a_2 + ib_2$. Dann ist

$$z_1 \pm z_2 = \left(a_1 \pm a_2\right) + i\left(b_1 \pm b_2\right)$$





Rechnen mit komplexen Zahlen II

Multiplikation, Division & Potenzieren

Es seien
$$z = a + ib$$
, $z_1 = a_1 + ib_1$ und $z_2 = a_2 + ib_2$. Dann ist
$$z_1 \cdot z_2 = \left(a_1 a_2 - b_1 b_2\right) + i\left(a_1 b_2 + a_2 b_1\right)$$
$$\frac{z_1}{z_2} = \left(\frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2}\right) + i\left(\frac{a_2 b_1 - a_1 b_2}{a_2^2 + b_2^2}\right)$$
$$z^n = (a + ib)^n = \sum_{l=0}^n \binom{n}{k} a^k (ib)^{n-k}$$

Rechnen mit komplexen Zahlen III

Aufgabe 1

Es seien $z_1 = 6 + i$ und $z_2 = 2 - 3i$ zwei komplexe Zahlen. Berechne $z_1 + z_2$, $z_1 - z_2$, $z_1 \cdot z_2$ sowie $\frac{z_1}{z_2}$. Gib die Ergebnisse jeweils in der Form z = a + ib an.

Rechnen mit komplexen Zahlen IV

Aufgabe 2

Bestimme das multiplikative Inverse der komplexen Zahl z = 1 + 2i.

Aufgaben zur Wiederholung

Vollständige Induktion I

Aufgabe 3

Zeige mithilfe einer vollständigen Induktion, dass die folgende Aussage für alle $n \ge 4$ gilt:

$$n! > 2^n$$
.

Vollständige Induktion II

Aufgabe 4

Zeige mithilfe einer vollständigen Induktion, dass die folgende Aussage für alle $n \in \mathbb{N}$ mit n > 3 gilt:

$$n \cdot \sqrt{n} > n + \sqrt{n}$$
.

Vollständige Induktion III

Aufgabe 5

Zeige mithilfe einer vollständigen Induktion, dass die folgende Aussage für alle $n \in \mathbb{N}$ gilt:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Abbildungen I

Aufgabe 6

Entscheide, ob die folgende Abbildung injektiv ist. Begründe deine Aussage!

$$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$

$$f(n, m) = (n + 2m, 2n - m)$$

Abbildungen II

Aufgabe 7

Entscheide, ob die folgende Abbildung surjektiv ist. Begründe deine Aussage!

$$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$

$$f(n, m) = (n + 2m, m + 7)$$

Abbildungen III

Aufgabe 8

Entscheide, ob die folgende Abbildung surjektiv ist. Begründe deine Aussage!

$$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$

$$f(n, m) = (2n + m, m + 7)$$

Abbildungen IV

Aufgabe 9

Es seien A und B (endliche) Mengen und $g:A\to B$ eine Abbildung. Zeige, dass g genau dann surjektiv ist, wenn für alle $C\subseteq B$ die Gleichung $g(g^{-1}(C))=C$ gilt.

Abbildungen V

Aufgabe 10

Es seien A und B (endliche) Mengen und $f:A\to B$ eine Abbildung. Zeige, dass f genau dann injektiv ist, wenn für alle $C\subseteq A$ die Gleichung |C|=|f(C)| gilt.

RSA I

Zum Erzeugen des öffentlichen und des privaten Schlüssels werden die folgenden Schritte ausgeführt:

- 1. Auswahl von zwei verschiedenen Primzahlen p und q.
- 2. Bestimmen des RSA-Moduls $N = p \cdot q$.
- 3. Berechnen des Werts $\varphi(N) = (p-1) \cdot (q-1)$.
- 4. Auswahl einer zu $\varphi(N)$ teilerfremden Zahl e mit $1 < e < \varphi(N)$.
- 5. Berechnen des Werts d mit $1 < d < \varphi(N)$, so dass gilt:

$$e \cdot d \equiv 1 \pmod{\varphi(N)}$$
.

Man erhält den öffentlichen Schlüssel (e, N) sowie den privaten Schlüssel (d, N).

RSA II

Beim *Verschlüsseln* einer Nachricht m (mit $1 \le m < N$) kann die verschlüsselte Nachricht c (mit $1 \le c < N$) wie folgt berechnet werden:

$$m^e \equiv c \pmod{N}$$
.

Beim Entschlüsseln einer verschlüsselten Nachricht c kann die ursprüngliche Nachricht m wie folgt berechnet werden:

$$c^d \equiv m \pmod{N}$$
.

RSA III

Aufgabe 11

Gegeben sei die folgende verschlüsselte Nachricht c=12 und der zugehörige öffentliche RSA-Schlüssel (37, 143). Berechne die unverschlüsselte Nachricht m.

Kombinatorik I

Für das Ziehen von k Elementen aus einer n-elementigen Menge gelten die folgenden Formeln:

	mit Reihenfolge	ohne Reihenfolge
mit Zurücklegen	n ^k	$\binom{k+n-1}{k}$
ohne Zurücklegen	n <u>k</u>	$\binom{n}{k}$

Kombinatorik II

Aufgabe 12

- a) Bestimme die Anzahl der Permutationen $\pi \in S_5$, für die $\pi(2) < \pi(3)$ gilt.
- b) Bestimme die Anzahl der surjektiven Abbildungen $A \rightarrow B$ mit |A| = |B| = 42.
- c) Bestimme den Koeffizienten von x^2y^3 in $(x+y)^5$.
- d) Bestimme den Koeffizienten von $x^2y^3z^5$ in $(x+y+z)^{10}$.
- e) Bestimme die Anzahl der Möglichkeiten, 12 (nicht unterscheidbare) Bonbons derart auf 7 Kinder zu verteilen, sodass jedes Kind mindestens ein Bonbon bekommt.

Untergruppen & Nebenklassen

Aufgabe 13

- a) Bestimme die durch 4 erzeugte Untergruppe U von $(\mathbb{Z}_8,+)$.
- b) Bestimme die Links- und Rechtsnebenklassen der Untergruppe U.

Permutationen

Aufgabe 14

Bestimme die Ordnung der Permutation $\pi = (12)(234)(145)(1523)$ in S_5 .

Viel Erfolg bei der Klausur :)